|
Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies. The initial detection of radio waves from an astronomical object was made in the 1930s, when Karl Jansky observed radiation coming from the Milky Way. Subsequent observations have identified a number of different sources of radio emission. These include stars and galaxies, as well as entirely new classes of objects, such as radio galaxies, quasars, pulsars, and masers. The discovery of the cosmic microwave background radiation, regarded as evidence for the Big Bang theory, was made through radio astronomy. Radio astronomy is conducted using large radio antennas referred to as radio telescopes, that are either used singularly, or with multiple linked telescopes utilizing the techniques of radio interferometry and aperture synthesis. The use of interferometry allows radio astronomy to achieve high angular resolution, as the resolving power of an interferometer is set by the distance between its components, rather than the size of its components. == History == Before Jansky observed the Milky Way in the 1930s, physicists speculated that radio waves could be observed from astronomical sources. In the 1860s, James Clerk Maxwell's equations had shown that electromagnetic radiation is associated with electricity and magnetism, and could exist at any wavelength. Several attempts were made to detect radio emission from the Sun including an experiment by German astrophysicists Johannes Wilsing and Julius Scheiner in 1896 and a centimeter wave radiation apparatus set up by Oliver Lodge between 1897-1900. These attempts were unable to detect any emission due to technical limitations of the instruments and the discovery of the radio reflecting ionosphere in 1902 led physicists to conclude that the layer would bounce any astronomical radio transmission back into space, making them undetectable.〔(【引用サイトリンク】 Pre-History of Radio Astronomy )〕 Karl Jansky made the discovery of the first astronomical radio source serendipitously in the early 1930s. As an engineer with Bell Telephone Laboratories, he was investigating static that interfered with short wave transatlantic voice transmissions. Using a large directional antenna, Jansky noticed that his analog pen-and-paper recording system kept recording a repeating signal of unknown origin. Since the signal peaked about every 24 hours, Jansky originally suspected the source of the interference was the Sun crossing the view of his directional antenna. Continued analysis showed that the source was not following the 24-hour daily cycle of the Sun exactly, but instead repeating on a cycle of 23 hours and 56 minutes. Jansky discussed the puzzling phenomena with his friend, astrophysicist and teacher Albert Melvin Skellett, who pointed out that the time between the signal peaks was the exact length of a sidereal day, the timing found if the source was astronomical, "fixed" in relationship to the stars and passing in front of the antenna once every Earth rotation.〔(【引用サイトリンク】 World of Scientific Discovery on Karl Jansky )〕 By comparing his observations with optical astronomical maps, Jansky eventually concluded that the radiation source peaked when his antenna was aimed at the densest part of the Milky Way in the constellation of Sagittarius. He concluded that since the Sun (and therefore other stars) were not large emitters of radio noise, the strange radio interference may be generated by interstellar gas and dust in the galaxy.〔 (Jansky's peak radio source, one of the brightest in the sky, was designated Sagittarius A in the 1950s and, instead of being galactic "gas and dust", has since be found to be emitted by electrons in a strong magnetic field from the complex of objects found in that area).〔 (p. 163. )〕〔(Bojan Kambič, Viewing the Constellations with Binoculars, pages 131-133 )〕 Jansky announced his discovery in 1933. He wanted to investigate the radio waves from the Milky Way in further detail, but Bell Labs reassigned him to another project, so he did no further work in the field of astronomy. His pioneering efforts in the field of radio astronomy have been recognized by the naming of the fundamental unit of flux density, the jansky (Jy), after him. Grote Reber was inspired by Jansky's work, and built a parabolic radio telescope 9m in diameter in his backyard in 1937. He began by repeating Jansky's observations, and then conducted the first sky survey in the radio frequencies.〔(【引用サイトリンク】 Grote Reber )〕 On February 27, 1942, J.S. Hey, a British Army research officer, made the first detection of radio waves emitted by the Sun.〔J. S. Hey. The Radio Universe, 2nd Ed., Pergamon Press, Oxford-New York (1975),〕 At Cambridge University, where ionospheric research had taken place during World War II, J.A. Ratcliffe along with other members of the Telecommunications Research Establishment that had carried out wartime research into radar, created a radiophysics group at the university where radio wave emissions from the Sun were observed and studied. This early research soon branched out into the observation of other celestial radio sources and interferometry techniques were pioneered to isolate the angular source of the detected emissions. Martin Ryle and Antony Hewish at the Cavendish Astrophysics Group developed the technique of Earth-rotation aperture synthesis. The radio astronomy group in Cambridge went on to found the Mullard Radio Astronomy Observatory near Cambridge in the 1950s. During the late 1960s and early 1970s, as computers (such as the Titan) became capable of handling the computationally intensive Fourier transform inversions required, they used aperture synthesis to create a 'One-Mile' and later a '5 km' effective aperture using the One-Mile and Ryle telescopes, respectively. They used the Cambridge Interferometer to map the radio sky, producing the famous 2C and 3C surveys of radio sources. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「radio astronomy」の詳細全文を読む スポンサード リンク
|